AN EXAMPLE OF A UNIVERSAL BANACH SPACE

BY

A. SZANKOWSKI

ABSTRACT

We construct a separable reflexive Banach space $\mathfrak X$ which is complementably universal for all finite dimensional Banach spaces. By this we mean: for every finite dimensional Banach space E there is isometric embedding i : $E \longrightarrow \mathfrak{X}$ such that there exists a projection $P: \mathfrak{X} \longrightarrow E$ with $\Vert P \Vert = 1$.

Our result is related to that of C. Bessaga $\lceil 1 \rceil$ who proved that there exists no finite dimensional B-space universal for all two dimensional B-spaces. Bessaga's result was extended by V. Klee in $[2]$ and by J. Lindenstrauss in $[3]$. In these papers the problem of the existence of a separable reflexive space universal for all finite dimensional spaces was posed and discussed. It was noticed there that the space $A = (\sum \oplus l_{\infty}^n)_2$ is "almost" universal for all finite dimensional spaces (by this we mean that for every $\varepsilon > 0$ and for every finite dimensional E there exists an embedding $T: E \to A$ such that $||T|| ||T^{-1}|| < 1 + \varepsilon$). In our construction we develop in some sense this idea. Let us mention also that J. Lindenstrauss proved in $\lceil 4 \rceil$ that L_1 is a universal space for all two dimensional spaces.

The existence of $\mathfrak X$ will immediately follow from the following:

THEOREM. For every natural m there exists a Banach space \mathfrak{X}_m which is *isomorphic to 1*₂ and is complementably universal for all m-dimensional Banach *spaces.* (We take $\mathfrak{X} = (\Sigma \oplus \mathfrak{X}_m)_2$.)

PROOF. m will be fixed. By a *gauge function* we mean any continuous function $w: R^m \to R_+$ (non-negative reals) such that

- 1) $w(tx) = |t| w(x)$ for every $t \in R$, $x \in R^m$.
- 2) $w(x) = 0$ iff $x = 0$.

We denote $K(w) = \{x \in \mathbb{R}^m : w(x) \le 1\}$, $\mathfrak{A} = \{K(w) : w \text{ is a gauge function}\}.$

Received November 24, 1971

If will also be regarded as the set of all gauge functions and for $K \in \mathfrak{A}$, by $w(K)$ we denote the "Minkowski functional" of K .

For $K \in \mathfrak{A}$ we define its deficiency

$$
D(K) = \inf\{t : tK \supset \operatorname{conv} K\}.
$$

Let $\mathcal{B} = \{K \in \mathfrak{A}: D(K) < 2\}$. It is clear that \mathcal{B} is separable in the following sense:

(S) There exists a sequence $\{w_i\}_{i=1}^{\infty} \subset \mathfrak{B}$ such that for every pair $w, w' \in \mathfrak{B}$ with $w < w'$ there is an *i* such that

$$
w < w_i < w'.
$$

In the sequel we use the following notation:

1) Given $w \in \mathcal{B}$, let \overline{w} be the norm corresponding to the set conv $K(w)$. By the definition of $$\mathfrak{B}$,$

$$
\overline{w} \leq w \leq 2\overline{w}.
$$

2) For a sequence $x = (x_i) \in (R^m)^{\infty}$, let $W(x) = (\sum w_i^2(x_i))^{\frac{1}{2}}$, $\bar{W}(x) = (\sum \bar{w}_i^2(x_i))^{\frac{1}{2}}$. By (1),

$$
(1') \t\t\t \overline{W} \leq W \leq 2\overline{W}.
$$

Denote $X = \{x: \overline{W}(x) < \infty\}$, $B = \{x: \overline{W}(x) \le 1\}$. Then the Banach space $\mathfrak{X}' = X$ equipped with the norm \bar{W} , is an l_2 product of a countable family of m-dimensional spaces and is therefore isomorphic to l_2 .

3) For $x \in R^m$ and a sequence $M = (i_1, i_2, \cdots)$ of natural numbers put

$$
(w_{i_1} \stackrel{?}{\vee} \cdots \stackrel{?}{\vee} w_{i_n})(x) = \left(\sum_{j=1}^n w_{i_j}^2(x)\right)^{\frac{1}{2}},
$$

$$
\left(\stackrel{?}{\vee} w_{i}\right)_{i \in M}(x) = \left(\sum_{j=1}^{\infty} w_{i_j}^2(x)\right)^{\frac{1}{2}}.
$$

In other words,

$$
(\sqrt{v} w_i) i_{\epsilon M}(x) = W(x_M)
$$

where

$$
x_M = (x_i)
$$
 with $x_i = x$ for $i \in M$, $x_i = 0$ for $i \notin M$.

Denote

$$
\Delta_M = \{x_M : x \in R^m\} \text{ and } B_M = \{x \in \Delta_M : W(x) \leq 1\}.
$$

We fix once and forever a norm u in R^m .

LEMMA. Let v be a norm in R^m and let (a_n) be a sequence of positive numbers *such that*

(i)
$$
\sum_{n=1}^{\infty} a_n^2 = 1, \quad a_1^2 > \frac{1}{2} > a_n^2 \text{ for } n = 2, 3, \cdots.
$$

Then there exists a sequence $M = M(v) = (i_n)$ *such that*

$$
v = (\bigvee^2 w_i)_{i \in M}
$$

$$
(**) \qquad \tfrac{1}{2} a_n v \leq w_{in} \leq 2 a_n v, \text{ more precisely}
$$

$$
a_1 v \leq w_{i_1} \leq 2a_1 v, \ \frac{1}{2}a_n v \leq w_{i_n} \leq a_n v \ \text{for} \ \ n = 2, 3, \cdots.
$$

PROOF OF THE LEMMA. By induction we shall find (i_n) so that

(2)
$$
A_n v < W_n < A_n (1 + a_{n+1}^2 / 2 A_n^2)^{\frac{1}{2}} v,
$$

where

$$
A_n = \left(\sum_{j=1}^n a_j^2\right)^{\frac{1}{2}}, \ W_n = w_1 \overset{2}{\vee} \cdots \vee w_{i_n}.
$$

By (S) we can find a suitable i_1 . Denote for $n = 1, 2, \dots$

$$
s_n = (A_{n+1}^2 v^2 - W_n^2)^{\frac{1}{2}}.
$$

By (2) we have

$$
\frac{1}{2}a_{n+1}v < s_n < a_{n+1}v.
$$

Hence $D(s_n) < 2$ and $s_n \in \mathcal{B}$. Therefore, by (S), there is a number i_{n+1} such that

(4)
$$
s_n < w_{i_{n+1}} < (1+\alpha)^{\frac{1}{2}} s_n,
$$

where α is any number satisfying

$$
(5) \qquad \qquad (1+\alpha)^{\frac{1}{2}}s_n < a_{n+1}v
$$

$$
\alpha < a_{n+2}^2.
$$

Now if we estimate $W_{n+1}^2 = W_n^2 + w_{i_{n+1}}^2$:

$$
A_{n+1}^2 v^2 = W_n^2 + s_n^2 < W_n^2 + w_{i_{n+1}}^2 < W_n^2 + s_n^2 + \alpha s_n^2
$$
\n
$$
\leq (\bar{A}_{n+1}^2 + \alpha a_{n+1}^2)v^2 \leq A_{n+1}^2 (1 + a_{n+2}^2/2A_{n+1}^2)v^2,
$$

then we get (2).

It is clear that (i) and (2) imply (*). Also (i), (2) imply (**) for $n = 1$ and (3), (4), (5) imply (**) for $n > 1$.

(ii)
$$
\sum_{n=2}^{\infty} a_n^2 \leq 2^{-12}
$$

(iii) $a_1 v > u > a_n v$ for $n = 2, 3, \dots$,

(iv)
$$
\sum_{j=k+1}^{\infty} a_j^2 \le 2a_k^2
$$
, i.e., $\sum_{j=k}^{\infty} a_j^2 \le 2a_k^2$ for $k = 1, 2, \cdots$.

Then, by the Lemma, we can fix a sequence $M(v) = (i_n)$ so that (*), (**) are satisfied.

Now we define \mathfrak{X}_m as X equipped with the norm induced by the convex set

$$
K = \overline{\text{conv}} \left\{ 2^{-5}B \ \vee \bigcup_{v > u} B_{M(v)} \right\}
$$

(the closure is taken in the sense of W (or \bar{W})).

Since $2^{-5}B \subset K \subset B$, it is clear that the identity map is an isomorphism from \mathfrak{X}' onto \mathfrak{X}_m . Therefore \mathfrak{X}_m is also isomorphic to l_2 .

The theorem will be proved if we check the following two facts (here $M = M(v)$) $=(i_n)$ for a (fixed) norm $v > u$; (a_n) is the sequence of numbers assigned to v):

1) $K \cap \Delta_M = B_M$ (then the map $x \to x_M$ is an isometric embedding of R^m equipped with the norm v into \mathfrak{X}_m ; Δ_M is the range of this embedding),

2) There exists a projection $P: X \xrightarrow{onto} \Delta_M$ such that $P(K) \subset B_M$, i.e.,

a) $P(2^{-5}B) \subset B_M$

b)
$$
P(B_{M'}) \subset B_M
$$
 for any $M' = M(s) = (q_n)$ with $s > u$.

One sees easily that 2) implies 1).

For $\mathbf{x} = (x_i)$ we define $P(\mathbf{x}) = x_M$, where

$$
x = A \cdot \sum_{j=1}^{\infty} b_j x_i ,
$$

where $b_1 = a_1^2$, $b_n = 8a_n^2$ for $n = 2, 3, \cdots$ and $A = (\sum_{i=1}^{\infty} b_i)^{-1}$.

By (i) and (ii) we have $1 \ge A \ge \frac{1}{2}$.

PROOF OF a).

$$
\begin{aligned} \bar{W}(Px) \ &= v(x) \le 8A \sum_{j=1}^{\infty} a_j^2 v(x_{i,j}) \le 8(\sum a_j^2)^{\frac{1}{2}} \cdot (\sum a_j^2 v^2 (x_{i,j}))^{\frac{1}{2}} \\ \le 8 \cdot 1 \cdot 2(\sum w_{i,j}^2 (x_{i,j}))^{\frac{1}{2}} \le 2^4 W(x) \le 2^5 \bar{W}(x). \end{aligned}
$$

Proof of b). We see that for $x \in \mathbb{R}^m$, $P(x_M) = P(x_{M \cap M}) = c x_M$ where $c = A \cdot \sum_{i=1}^{n} b_i$.

We consider two cases:

(i) $q_1 = i_1$. Let k be the first number such that $i_k \notin M'$. Then $c^2 \leq c \leq$ $1-8Aa_k^2 \leq 1-4a_k^2$ and

$$
W^{2}(Px_{M'}) = c^{2} \sum_{j=1}^{\infty} w_{i,j}^{2}(x)
$$

\n
$$
\leq (1 - 4a_{k}^{2})w_{i,j}^{2}(x) + \sum_{1 \leq j < k} w_{i}^{2}(x) + \sum_{j \geq k} w_{i}^{2}(x)
$$

\n
$$
\leq \sum_{1 \leq j < k} w_{i,j}^{2}(x) - (4a_{k}^{2}w_{i,j}^{2}(x) - \sum_{j \geq k} w_{i,j}^{2}(x))
$$

\n
$$
\leq W^{2}(x_{M'}).
$$

(We have by (iv) and (**): $4a_k^2 w_{i}(x) \ge \sum_{j \ge k} w_{ij}(x)$.)

(ii) $q_1 \neq i_1$. Then, by (iii), $q_1 \notin M$ and

$$
W(x_{M \cap M'}) \leq W(x_{M \cap M'}) \leq \left(\sum_{j=2} w_{q_j}(x)\right)^2
$$

$$
\leq 2^{-6} s(x) = 2^{-6} W(x_{M'}) \leq 2^{-5} W(x_M).
$$

Therefore, if $x_M \in B_M$, then $x_{M \cap M'} \in 2^{-5}B$, and, by a), $P(x_{M \cap M'}) \in B_M$, hence $P(x_{M}) = P(x_{M \cap M}) \in B_M$.

 $\sqrt{1}$

This completes the proof of our theorem.

The author thanks Professor J. Lindenstrauss for suggesting the problem and for valuable discussions.

REFERENCES

1. C. Bessaga, A *note on universal Banach spaces of finite dimension,* Bull. Acad. Polon. Sci. 6 (1958), 97-101.

2. V. Klee, *Polyhedral sections of convex bodies,* Acta. Math. 103. (1960), 243-267

3. J. Lindenstrauss, *Notes on Klee's paper 'Polyhedral sections of convex bodies',* Israel J. Math. 4 (1966), 235-242.

4. J. Lindenstrauss, *On the extension of operators with a finite dimensional range,* Illinois J. Math. 8 (1964), 488-499.

MATEMATISK INSTITUT

AARHUS UNIVERSITET