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ABSTRACT 

We construct a separable reflexive Banach space X which is complementably 
universal for all finite dimensional Banach spaces. By this we mean: for 
every finite dimensional Banach space E there is isometric embedding i" 
E ) X such that there exists a projection P: ~ O n t o  /E with II II = 1. 

Our result is related to that of  C. Bessaga [1] who proved that there exists no 
finite dimensional B-space universal for all two dimensional B-spaces. Bessaga's re- 
sult was extended by V. Klee in [2] and by J. Lindenstrauss in [3]. In these papers 
the problem of the existence of a separable reflexive space universal for all finite 

dimensional spaces was posed and discussed. It  was noticed there that the space 

A = (Y~@ l~o)2 is " a l m o s t "  universal for all finite dimensional spaces (by this we 

mean that  for every e > 0 and for every finite dimensional E there exists an embed- 

ding T:  E -~ A such that  I1 T l[ [i T-ill  < 1 + e). In our construction we develop 

in some sense this idea. Let us mention also that J. Lindenstrauss proved in [4-] 

that L1 is a universal space for all two dimensional spaces. 

The existence of  X will immediately follow from the following: 

THEOREM. For every natural m there exists a Banach space X,, which is 

isomorphic to 12 and is complementably universal for all m-dimensional Banach 

spaces. (We take X = (~@X,,)2.) 

PROOF. m will be fixed. By a gauge function we mean any continuous function 

w: R m ~ R+ (non-negative reals) such that  

1) w(tx) = [ t[ w(x) for every t ~ R, x ~ R m. 

2) w(x) = 0 iff x = 0. 

We denote K ( w ) =  {x~Rm:w(x) < 1}, 9~= {K(w): w is a gauge function}. 

Received November 24, 1971 

292 



Vol. 11, 1972 A UNIVERSAL BANACH SPACE 293 

9~ will also be regarded as the set of  all gauge functions and for K �9 ~ ,  by w(K) 

we denote the "Minkowski functional" of  K. 

For  K e 9~ we define its deficiency 

D(K) = inf( t :  tK ~ convK}. 

Let ~ = {Keg~: D(K)< 2}. It is clear that ~ is separable in the following 

sense: 

(S) There exists a sequence {wi}i~l c ~ such that  for every pair w,w' ~ with 

w < w' there is an i such that  

W < Wi < W'. 

In the sequel we use the following notation: 

1) Given w e ~ ,  let ~ be the norm corresponding to the set conv K(w). By the 

definition of  ~ ,  

(1) ~ -< w -< 2f~. 

2) For  a sequence x = (xi) e (R") ~176 let W(x) = (Z,w~(xl)) ~, if(x) = (E~(x i ) )  ~. 
By (1), 

(1') fie< W < 2fie. 

Denote X = {x: fie(x) < oo}, B = {x: fie(x) < l}. Then the Banach space X' = X 

equipped with the norm fie, is an lz product of  a countable family of  m-dimensional 

spaces and is therefore isomorphic to 12. 

3) For  x eR" and a sequence M = (il, i2 , " ' )  o f  natural numbers put 

2 '~  

In other  words, 

where 

Denote 

( Vw3~oM(x) = Z w~j(x) . 
j = l  / 

2 

( V w3ioM(x) = W(XM) 

X M =(Xi) with x i = x  for  i e M ,  x t=O for  iq~M. 

AM = {XM:XeR m} and B M = {XeAM: W(x) ~ 1}. 

We fix once and forever a norm u in R m. 
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LEMMA, 

such that 

(i) 

A. S Z A N K O W S K I  

Let  v be a norm in R m and let (an) be a sequence 

2 a 2 f o r  = 2 , 3 , . . . .  a n = l ,  a 2 > � 8 9  n 
n = l  

Then  there exists a sequence M = M ( v ) =  (in) such that 

(*) 

(**) 

Israel J. Math., 

of  positive numbers  

v = ( ~ / w , ) , ~  M 

�89 a,v < win < 2anY, more precisely 

alv  < wi, < 2alv,  �89 < wi. < any f o r  n = 2, 3, . . . .  

PROOF OF THE LEMMA. 

(2) 

where 

By induct ion we shall find (in) so tha t  

2 I /2A2n)  r AnY < Wn < An(1 + an+ 

( z 2)' a , =  aj , W n = w l  v "" v w l .  
j = l  

By (S) we can find a suitable i~. Denote  for  n = 1,2, ... 

2 2 2..~ s. = ( A n +  i v  - W'& . 

By (2) we have 

(3) ~an+l v < s. < an+iv. 

Hence D(s.) < 2 and s n E ~ .  Therefore ,  by (S), there  is a number  in+ I such tha t  

(4) s. < wi.+, < (1 + ~)~Sn, 

where a is any number  satisfying 

(5) (1 + a)%. < an+~v 
2 

( 5 ' )  Ct < an+ 2. 

Now if  we estimate 2 2 w.2 . W~,+I = W. + ,.+,. 

= 2 2 w ~ < Wn ~ + S. ~ + ~S~ A~+t v2 W 2 + sn < W" + ,.+, 

-2  aaZn+t)vZ < 2 2 2 2 < (An+l + An+l( 1 + an+2/2An+l)v , 

then  we get (2). 

I t  is clear tha t  (i) and (2) imply (*). Also (i), (2) imply (**) for  n = 1 and (3), 

(4), (5) imply (**) for  n > 1. 
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CONSTRUCTION. TO each no rm v > u in R"  we assign a (fixed) sequence (a.) so 

that  (i) and (ii), (iii), (iv) below are satisfied: 

(ii) ~ a~ = 2 -12 
n=2  

(iii) aav > u > a,,v fo r  n = 2,3, ..., 

2 2 (iv) ~ aj=2<2a 2, i.e., ~ aj < 2 a  k fo r  k = 1 , 2 , . . .  
j = k + l  j = k  

Then,  by the Lemma,  we can fix a sequence M ( v ) =  (i,,) so tha t  (*), (**) are 

satisfied. 

Now we define 3~., as X equipped with the no rm induced by the convex set 

( the closure is taken in the sense o f  W (or  # ) ) .  

Since 2 -5B c K c B, it is clear tha t  the identi ty map  is an i somorphism f rom 

X' on to  ~,~. There fore  t ,~ is also i somorphic  to 12. 

The  theorem will be proved if we check the following two facts (here M = M(v) 

= (i,) for  a (fixed) no rm v > u; (a,) is the sequence o f  numbers  assigned to  v): 

1) K h A M  = BM ( then the map x ~ xM is an isometric embedding o f  R m 

equipped with the no rm v into Xm; AN is the range o f  this embedding),  

2) There  exists a project ion P:  X ~176 M such that  P ( K ) c  BM, i.e., 

a) P (2 -  5 B) c BM 

b) P(BM.) ~ BM for  any M '  = m(s) = (q.) with s > u. 

One sees easily tha t  2) implies 1). 

Fo r  x = (xi) we define P (x )=  xM, where  

oo 
x = A "  X, bjx i ,  

j = l  

where bl = a~, b. = 8a 2 for  n = 2,3, .-. and A = (]~j%lbj) -a 

By (i) and (ii) we have 1 > A > �89 

PROOF OF a) .  

l~(Px) = v(x) <-_ 8A ~. a~v(x,j) <_ 8( •a ] )  �89 (]~a 2 ~ (x,))  r 
j = l  

=< 8" 1" 2(]~w2~(xij)) ~" =< 24W(x) =< 25ff/(x). 
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PROOF OF b). 

c = A "  ~ j=l j~mbj .  

We consider two cases: 

(i) ql = il. Let k be the 

1 - 8 A a ~ < l - 4 a  2 and 

wZ(Pxm,) 

We see that  for x e R " ,  P(xM,)=P(xM~M')= CX~ where 

first number such that  ikr  Then c2< c < 

= c 2 ~ w2(x) 
j=l  

_<(1 2 2 _ -4ak)wi , (x )  + ~, w~(x) + Z w2,(x) 
l<j<k j>k 

<_ Z, w~.(x)- 2 - (4akWi,(X) -- ~, w2is(x)) 
16j<k j~_k 

< W2(xM,). 

4ak W~,(X) > (We have by (iv) and (**): 2 z = Z,j>=k~ij(x).) 

(ii) ql # il. Then, by (iii), ql r M and 

"j?2 Wqj(X))~ ff/(xM~,) <-_ W(xM~,) < ( 

2-6S(X) = 2-6W(xM,) <= 2-5 IJ/(XM). 

Therefore,  if X~r ~BM,, then XM~M, E2-SB, and, by a), P(XM~M')eBM, hence 

P(xM,) = P(xm ,~M') ~ BM. 

This completes the p roof  of  our theorem. 

The author  thanks Professor J. Lindenstrauss for suggesting the problem and 

for  valuable discussions. 
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