AN EXAMPLE OF A UNIVERSAL BANACH SPACE

BY

A. SZANKOWSKI

ABSTRACT

We construct a separable reflexive Banach space X which is complementably
universal for all finite dimensional Banach spaces. By this we mean: for
every finite dimensional Banach space E there is isometric embedding i:
E——> X such that there exists a projection P: X o9 iE with ” P ” =1,

Our result is related to that of C. Bessaga [1] who proved that there exists no
finite dimensional B-space universal for all two dimensional B-spaces. Bessaga’s re-
sult was extended by V. Klee in [2] and by J. Lindenstrauss in [3]. In these papers
the problem of the existence of a separable reflexive space universal for all finite
dimensional spaces was posed and discussed. It was noticed there that the space

A=(X®!L), is “almost” universal for all finite dimensional spaces (by this we
mean that for every ¢ > 0 and for every finite dimensional E there exists an embed-
ding T:E— A such that | T || || T='| < 1 +¢). In our construction we develop
in some sense this idea. Let us mention also that J. Lindenstrauss proved in [4]
that L, is a universal space for all two dimensional spaces.

The existence of X will immediately follow from the following:

THEOREM. For every natural m there exists a Banach space X, which is
isomorphic to 1, and is complementably universal for all m-dimensional Banach
spaces. (We take X =(X®X,),.)

Proor. m will be fixed. By a gauge function we mean any continuous function
w: R™ = R, (non-negative reals) such that

1) w(tx) = | tlw(x) for every teR, x€R™.

2) w(x) =0iff x =0.

We denote K(w)={xeR™: w(x) <1}, U ={K(w):w is a gauge function}.
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A will also be regarded as the set of all gauge functions and for K € U, by w(K)
we denote the ‘‘Minkowski functional” of K.
For K e we define its deficiency

D(K) =inf{t: tK > convK}.
Let B = {KeW: D(K) <2}. It is clear that B is separable in the following
sense:

(S) There exists a sequence {w;};~; =B such that for every pair w,w’ € B with
w < w’ there is an i such that
w<w<w.
In the sequel we use the following notation:
1) Given weB, let # be the norm corresponding to the set conv K(w). By the
definition of B,

(1) #

2) For a sequence x = (x;) € (R™)”, let W(x) = (Zw}(x))*, W(x) = (Zw3(x))*.
By (D),
1) Wsws2w.
Denote X = {x: W(x) < w0}, B={x: W(x) < 1}. Then the Banach space X' = X
equipped with the norm W, is an /, product of a countable family of m-dimensional

w < 2w.

IIA
IIA

spaces and is therefore isomorphic to 1,.
3) For xeR™ and a sequence M = (i,,i,,-:+) of natural numbers put

2

n \E
ooy ¥ & W) = ( = )
j=1
2 ° &
(VW)ien(x) = (Z Wi,(x)) .
i=1
In other words,
2
(Vwiu(x) = W(xy)
where
Xy =(x;) with x;=x for ieM, x; =0 for i¢ M.
Denote
Ay ={xy: xeR"} and By ={xeAy: W(x) £ 1}.

We fix once and forever a norm u in R™.
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LEMMA. Let v be a norm in R™ and let (a,) be a sequence of positive numbers
such that

(1) wlaf=1, a?>%>al for n=2,3,.
Then there exists a sequence M = M(v) = (i,) such that
(™ U=(\§Wi)ieM
(**) a0 2w, <2a,v, more precisely
av=w;, S2ay0, tap<w; Zaw for n=23,-.
Proor OF THE LEMMA. By induction we shall find (i,) so that
(2) A < W, < A1+ ai. s [247)%,
where
A, = ( ‘2 af-)%, Wo=w v o V.

ji=1

By (S) we can find a suitable i;. Denote for n = 1,2,
Sy = (A:+ 1Uz - Wﬁ)*

By (2) we have
(3 Yap v <, < ay4qv.
Hence D(s,) < 2 and s, €B. Therefore, by (S), there is a number i,,, such that
4 Sp <W; ., <(1 +a)ts,
where « is any number satisfying
) (1 + a)¥s, < Gy
(5 < af”.

. . 2 2 2
Now if we estimate Wy, =W, +w; .

A2 0P = WEs2<WEiaw?, <W2+s2+as?

in+1

A

(/T:+1 + aafﬁ)vz = A3+1(1 + a:+2/2A:+1)vz,
then we get (2).

It is clear that (i) and (2) imply (*). Also (i), (2) imply (**) for n =1 and (3),
(4), (5) imply (**) for n > 1.
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CoNsTRUCTION. To each norm v >u in R™ we assign a (fixed) sequence (a,) so
that (i) and (ii), (iii), (iv) below are satisfied:

[eo]
(ii) Yaig2 2
n=2
(1) a,v>u>aw for n=2,3,-,
o0 fe o)
(iv) Y a2, ie, ¥ a?<2af for k=1,2,-.
F=k+1 j=k

Then, by the Lemma, we can fix a sequence M(v) =(i,) so that (¥), (**) are
satisfied.
Now we define X,, as X equipped with the norm induced by the convex set

K=conv {27°B v | By,

(the closure is taken in the sense of W (or W)).

Since 27°B < K < B, it is clear that the identity map is an isomorphism from
X' onto X,,. Therefore X,, is also isomorphic to L,.

The theorem will be proved if we check the following two facts (here M = M(v)
= (i,) for a (fixed) norm v > u; (a,) is the sequence of numbers assigned to v):

1) K NAy = By (then the map x — x, is an isometric embedding of R™
equipped with the norm v into X,,; A, is the range of this embedding),

onto

2) There exists a projection P: X—— A, such that P(K) = By, i.e.,

a) P(27°B) < By
b) P(By) < By for any M’ = M(s) =(q,) with s > u.

One sees easily that 2) implies 1).
For x = (x;) we define P(x) = x,;, where

e
x=A- X bx,,
=1

J=
where b, = a?, b, = 8a2 forn =2,3,---and 4 = (2;‘;1[)1.)‘1.
By (i) and (ii) we have 1 2 4 = §.

PROOF OF a).

W(Px) = v(x) <84 % ajo(x;) S 8(Zah) « (Zdld (x, )}
i=1

< 8-1-2(Twi(x )t S 24W(x) < 25W(x).
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Proor OF b). We see that for xe&R™, P(xp.) = P(xp,p-) = cxy Wwhere
c=A-Xj-y,enmb;

We consider two cases:

(i) g, = i;. Let k be the first number such that i,¢ M’. Then ¢* < ¢ <
1 —84al <1 —4a; and

M8

W3(Pxy) c?

j

(1 —daPwi(x) + T wi(x) + T wi(x)
1 k

<j< jzk

Wi (%)
1

/AN

IA

Y wi) = @aiwi(x) = X wi(x)
jzk

15j<k
W3 (xpr.)-
(We have by (iv) and (**): 4a2w?(x) = 25 ,w;,(x).)

liA

(i) g, # i,. Then, by (iii), g, ¢ M and

Wesnera) S W) = 2 w,00)

< 2755(x) = 27 W(xpy) £ 273 W (xpr).

Therefore, if xy € By, then xy 5 €27°B, and, by a), P(x u-) € By, hence
P(xp) = P(Xp1am) € By

This completes the proof of our theorem.

The author thanks Professor J. Lindenstrauss for suggesting the problem and
for valuable discussions.
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